Public Key Cryptographic Primitives

Istvan Zsolt BERTA
istvan@berta.hu




1. Public key cryptography primitives

2. Certificates, Certificate Authorities,
Certification Paths

3. Electronic sighatures: signature creation & validation

4. Information security management at CAs
5. PKI business
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Public Key Crypto Primitives - Contents

" Public Key Cryptography
= RSA algorithm
= ECC algorithm
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Symmetric Key Cryptography

= Same key is used for encryption and decryption
= Symmetric key algorithms are fast and
short keys (e.g. 256 bits) can provide good security

= A symmetric key must be kept confidential; if the attacker
learns the key, he may decrypt messages or sign messages on
behalf of the sender

= Symmetric keys must be transmitted via a secure channel, and
need to be a shared secret of the sender and recipient

= Example algorithms: AES, 3DES, RC4, Twofish, ...
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Public Key Cryptography

a.k.a. Asymmetric Key Cryptography
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Public Key Cryptography

a.k.a. Asymmetric Key Cryptography
" Encryption and decryption are performed with different keys

" |n fact, the key has two parts:

— one part can be used for encryption/verification only, this
can even be public

— the other part can be used for decryption/signature, this
must be kept private

= Only the public key needs to be transmitted to the recipient, and
this does not need a secure channel

= There is no need to have shared secret between sender and
recipient = this makes key management easier

= Public key cryptography is slower than symmetric key crypto and
require longer (e.g. 2048 bits) keys for similar security
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Public key and private key

= The public and the private key must be interlinked, so that

— messages encrypted with the public key can be decrypted
with the corresponding private key; and

— messages signed with the private key can be verified with
the corresponding public key

The must not be an efficient method for computing the private
key from the public key

Most public key algorithms are based on mathematical
problems with the above properties, e.g.:

— RSA: Integer Factorization Problem (IFP)
— ECC: Elliptic Curve Discrete Logarithm Problem (ECDLP)
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Digital Signature

= Public key cryptosystems allow the concept of digital signature
= A message encoded with Alice’s private key is signed.:

— Such an encoded message cannot be computed without
Alice’s private key, and

— anyone can verify this with Alice’s public key

— The signature proves that Alice signed the given message
and that it had not altered since she signed it

=" The signature is usually transmitted together with the cleartext
message

= Note that the signature does not provide confidentiality
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Sending an encrypted message
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Encryption is performed with the recipient’s public key; the
recipient can decrypt the message with their private key
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Sending a digitally sighed message
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The sender/signatory signs the message with their private key;
anyone (any recipient) can verify that the message not altered
after it had been signed by the signatory
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Summary: Symmetric vs Asymmetric

Symmetric key Asymmetric key (public key)

solutions: solutions:

= fast = slower

= small keys (e.g. 256 bits) = |ong keys (e.g. 2048 bits)

= distribution of keys is a = distribution of public keys
challenge as a secure does not need a secure
channel is needed channel

" signature is possible
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Typical combinations

1. Use public key crypto for exchanging symmetric keys; then use
these symmetric keys for bulk encryption — e.g. TLS, IPSEC

2. /Encrypt the long message with a random symmetric key;
encrypt the symmetric key only with the public key(s) of the
recipient(s) — e.g. SMIME/

3. Compute a hash of the message and sign the hash only with
the private key — most digital signature solutions work this way

Public Key Cryptographic Primitives | 14



RSA algorithm




65536
327768
16384
8192
4096
2048
1024
512
2506

65537 ..,..., 65537

= Thisis a prime!
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Integer factorization is a HARD problem

= No algorithm is known that can efficiently factorize an any large
composite number

" |FP: Integer Factorization Problem

= RSA s a cryptosystem based on the IFP, it implements both
encryption and signature

= Ron Rivest, Adi Shamir and Leonard Adleman - 1977
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RSA (Rivest-Shamir-Aldeman) alg. in a nutshell

1.
2.
3.
4.
5.

For any number x: (x¢)? = x (mod m)

Choose two random prime numbers: p and g

Compute their product: m=p *q

Compute ®(m) = (p-1) * (q-1)

Select number e to be relative prime to ®(m).
Compute number d, sothat e *d=1 (mod @(m))

Bob’s Bob’s
public key: private key:
m and e d
o @
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RSA key generation

= RSA key size is the size of the modulus (m)

= Select two random large (m/2 bits) random numbers
IXXXXXXXXXX... . XXXXXX 1

= Check if they are prime, repeat until two primes are found

— in practice, randomized primality testing algorithms (e.g. Miller-Rabin)
are used, chance of a composite number passing the test can be made
arbitrarily low

= Public exponent e is usually a fixed number

— alow e allows quick operations with a public key
— primes with a low number of 1s in their binary representation
— previously: 3, now: 65537

" Private exponent d can be computed using the extended
Euclidean algorithm
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Toy RSA (with small numbers)

1.
2.
3.
4.
5.

Choose two random prime numbers: p=5and q = 11
Compute theirproduct: m=p *q =511 =565
Compute @(m) = (p-1) * (q-1) = 4*10 = 40

Select number e to be relative prime to ®(m), lete = 3

Compute number d,sothat e *d =1 (mod ®(m))
d =27, because 27 *3 =81 =1 (mod 40)

For any number x: ( x3)?” = x (mod m)

Bob’s Bob’s
public key: private key:

m=55 and e=3 ad=27

o o

A more detailed example

can be found e.g. here



RSA encryption - example

Alice wishes to send cleartext
message m=8 to Bob

83=512 which is 17 (modulo 55)
Encrypted message = 17

Alice sends encrypted message
17 to Bob

27

@
3,55 @™

Bob receives encrypted message 17
from Alice

1727=1667 711 322 168 688 287 513 535 727 415 473

which is 8 (modulo 55)

The message Alice sent is: 8
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RSA signature - example

Alice

Bob wishes to sigh message 8 Alice receives message 8 and
signature 2, and verifies if 2 is a valid

827= 2417851639220258349412350  Signature from Bob on message 8

which is 2 (modulo 55)
23=8 (which is 8 modulo 55)

Bob sends the message 8 and
signature 2 to Alice As 2 is Bob’s signature for 8, so the

signature is valid.
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RSA caveats

= Exponentiation is never performed the previous, naive way
— computing modulo after each multiplication
— square and multiply algorithm — a lot more efficient

— further acceleration via p and g (based on Chinese Remainder Theorem)

" |n certain scenarios, there are efficient attacks, e.g.:
— very small public exponent (e) values
— multiple users using the same modulus (m)
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Security of RSA

= The attacker knows
— the public key (e, m)

— the encrypted / signed message

= The attacker may choose to
— factorize m
— guess the private key
— guess the decrypted message / signature

= Factoring integers is believed to be a hard problem
— it is believed that no polynomial time algorithm exists

= Computing d from (e, m) is equivalent to factoring m

= Computing the message from the ciphertext may not be
equivalent to factoring m
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Elliptic Curve Cryptography (ECC)




What is an elliptic curve?

= An elliptic curve consists of points (x,y) that satisfy the below
equation:
y2+axy+by=x3+cx*+dx+e
= where constants a, b, ¢, d, e and variables x, y
are elements of field F

= Curves over real numbers (where F=R) can be depicted as
graphical curves

" |n cryptography, elliptic curves can be used to define

mathematical problems that can be used as a basis for public
key cryptosystems
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An elliptic curve above real numbers (R)

-10

-15 ! L ! ! ! 1 !
-8 -6 -4 -2 0 2 4 6 8 10
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More elliptic curves over real numbers (R)

d For real numbers,

a=2 0 O
the equation

O <
can be
simplified to:

yZ=x3+ax+b
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We can define operations

" We can define operations between
points of the curve...

= Why?

= Why not?
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Adding points P and Q of the curve

geometrical definition

15 T T T

10 - _R=_(P+Q)

-10

_15 |

8 10
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Adding points P and Q of the curve

algebraic definition — a more general definition
P(Xlr y1) + Q(XZI yz) = R(X3r y3)
for curve y? = x3 +ax + b.

The coordinates of R can be obtained as follows:
X3 = S% - X - X,
Y3 = S(Xy7X3) - ¥y

where s is the ‘slope’ of the curve.

If P2 Qthen s=(y,-y,)/(X,-x,)

If P=Qthen (3x,°+a)/2y,

If Q =-Pthen P+ Q=0, where O is a point of infinity.
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Multiplying a point with an integer

= We can define another operation over the points of the curve:
multiplying a point with an integer

= Multiplication with an integer — adding the point multiple times
to itself

= For example:
5*P=P+P+P+P+P
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Elliptic Curve Discrete Logarithm Problem

= We define the following operations over elliptic curves:
— addition of two points of the curve
— multiplication of a point with an integer
* |f Qis a point of the curve and k is an integer, then
— based on Q and k*Q
— computing k
is the Elliptic Curve Discrete Logarithm Problem (ECDLP)

= We look for cases when the ECDLP is a ‘hard’ problem,
i.e. where no efficient algorithm is known

= This depends on the field, and also depends on the actual curve
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Over which field?

" [nfinite fields are not useful in cryptography due to e.g.
rounding and inaccuracy problems.

— Note: The field of real numbers (R) is never used in
cryptography, so graphical representations of curves are
illustration only.

* GF(p)—the field of integers modulo p, where p is prime;
the definition of + is same as the one for real numbers

= GF(2™) — elements of this field are binary vectors of length m,
they can also be represented as polynomials of the mth power;
as the characteristic of this field is 2, formulae of the definition
of + are slightly different
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Example curve over GF(p)
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Elliptic curve equation: y2 =x3 +x over ¥ -

Source: https://www.certicom.com/ecc-tutorial
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Example curve over GF(2™M)
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Source: https://www.certicom.com/ecc-tutorial
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ECC key generation

* The curve is usually a system-wide parameter; there are
recommended curves with good properties

— NIST curves (US) from nist.gov

— Brainpool curves (EU) from ecc-brainpool.org

= Qs abase point of a curve, another system-wide parameter
= The private key of user U is k,, a random integer
= The public key of user U is k,*Q, a point of the curve
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EC Diffie Hellman — key exchange

1. A>B:k,*Q

2. B> A:k*Q

3. Alice computes: k;*Q * k, = k,*k;*Q
Bob computes:  k,*Q * k; = k,*k;*Q

Thus obtain both parties shared secret k,*k;*Q
that can be used as a (basis for a) symmetric key.
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EC ElGamal — encryption

Alice sends message m, represented as point M of the curve.
1. Alice chooses a fresh random number r
2. Alice sends the encrypted message:

A= B: r*Q, M + r*k;*Q

3. Bob decrypts the message by computing k;*r*Q and
M+ r*k;*Q - k;*r*Q =M
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EC DSA — digital sighature (signing)
Alice

Alice signs message m:

1. Computes e = h(m) modulo n
where h is a hash function

2. Generates random number t
wheret € [1, n-1]

3. Computesr = (t*Q)[x] (modulo n)
where (t*Q)[x] stands for the x coordinate of point t*Q

4. Computes s =t1*(e +r*k,) (modulo n)

Alice’s signature on message misr, s:

r,s= (t*Q)[x], t1*(e + r*k,)
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EC DSA — digital signature (verification)

Bob verifies if

r,s= (t*Q)[x], t1*(e + r*k,)

is Alice’s signature on message m:

1. Bob also computes e = h(m) modulo n

2. Computes w = s (modulo n)

3. Computes u, = (e*w) and u, = r*w (modulo n)

4. Computes point (x,, y,) =u,;*Q+u,* k,*Q
which is (x;, y;) = Q*(u; + u,* k,)

5. Since s =t1*(e + r*k,),
t=s(e+r*k,) =w*(e + r*k,) = (u; + u,* k,)
and thus (x;, y,) = t*Q

6. The signature is valid iff r is the x coordinate of the above t*Q
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Why ECC?

" Provides security with significantly shorter keys than RSA
— 1024-bit RSA ~ 160-bit ECC
— 2048-bit RSA ~ 224-bit ECC

= Note that an exact comparison is very hard to be made
— |IFP (RSA) — since the ancient Greek
— ECDLP (ECC) —since 1985 (Koblitz, Miller)

= ECC has shorter keys but more complex operations, still ECC is
often considered faster

= NSA Suite B cryptography = ECC
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RSA and ECC

= RSA s fully symmetric

— public and private keys can be interchangeable (if e was not
a fixed value, it could also be made secret)

— signing and decryption are the same operation
These are specific to RSA

" The shown ECC algorithms for signing (ECDSA) and
encryption (EC ElIGamal) need fresh random value

— in practice, RSA encryption is (or should be) randomized too
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= |n public key cryptography, the key has two parts: one part can
be used for encryption / signature verification only, this can be
made public, the other part is used for decryption / signing, this
must be kept private

= Public key cryptography allows ‘signatures’ that can be verified
by anyone using the public key

= The public key and the private key needs to be interlinked, but
there must not be an efficient way for computing the private
key from the public part

= Public key cryptosystems are based on mathematical problems
with the above properties

— RSA: Integer Factorization Problem
— ECC: Elliptic Curve Discrete Logarithm Problem
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